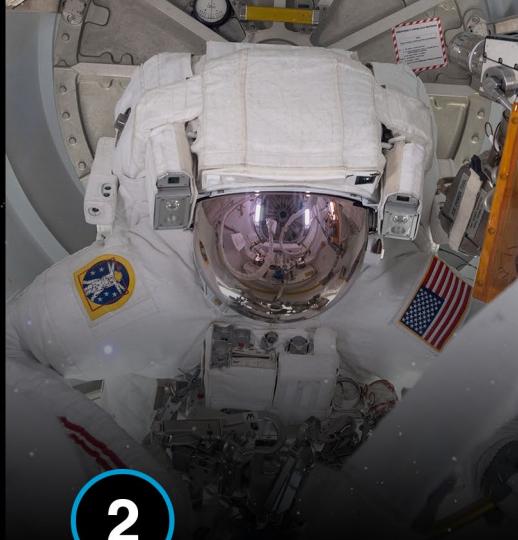


Human Research Program Mission Statement

To enable space exploration beyond Low Earth Orbit by reducing the risks to human health & performance

Hazards of Human Spaceflight

1


Space Radiation

Invisible to the human eye, radiation increases cancer risk, damages the central nervous system, and can alter cognitive function, reduce motor function and prompt behavioral changes.

2

Isolation and Confinement

Sleep loss, circadian desynchronization, and work overload may lead to performance reductions, adverse health outcomes, and compromised mission objectives.

3

Distance from Earth

Planning and self-sufficiency are essential keys to a successful mission. Communication delays, the possibility of equipment failures and medical emergencies are some situations the astronauts must be capable of confronting.

4

Gravity (or lack thereof)

Astronauts encounter a variance of gravity during missions. Traveling to and from their destinations, they will be in microgravity and will have to acclimate to one-sixth of Earth's gravity on the Moon or three-eighths of Earth's gravity on Mars.

5

Hostile/Closed Environments

The ecosystem inside a vehicle plays a big role in everyday astronaut life. Important habitability factors include temperature, pressure, lighting, noise, and quantity of space. It's essential that astronauts stay healthy and happy in such an environment.

HRP Looks to NASA's Health and Medical Technical Authority for Human Health Risk Prioritizations

Top Crew Health and Performance System Capability Challenges for Mars v1.0

Earth-Independent Human Operations

Computational Injury & Anthropometric Models


Mars Duration Food System

Exploration Exercise Countermeasures

Mars Duration Effects on Human Physiology

Understanding Individual Variability in Spaceflight

Risk Mitigations for Vehicle Atmospheres

Sensorimotor Countermeasures

Notional Human Spaceflight Strategy for Integrated Research and Testing for Mars Mission Readiness

FIRST MISSIONS
TO MARS

OPERATIONAL VALIDATED
CREW HEALTH &
PERFORMANCE

Mission Verification & Validation

ARTEMIS LUNAR-
BASED ANALOGS

MICROGRAVITY /
PARTIAL
GRAVITY

DEEP
SPACE
RADIATION

EXPLORATION
MEDICAL
CAPABILITY

EXTENDED
MISSIONS

Human systems validation

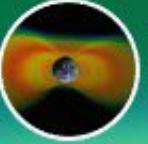
LOW-EARTH ORBIT
RISK REDUCTION

MICROGRAVITY /
1G TRANSITIONS

GENE /
MICROGRAVITY
INTERACTIONS

CROP
PRODUCTION

TEST NEW
SYSTEMS



INTEGRATED
SIMULATIONS

Risk mitigation of integrated and simulated hazards

GROUND-BASED
RESEARCH

SPACE
RADIATION
SIMULATION

BEDREST

ISOLATION
ANALOGS

ANALOG FIELD
TESTS

CREW HEALTH
AND PERFORMANCE
SYSTEM
FORMULATION

TIME →

GROUND & ISS

LEO COMMERCIALIZATION

ARTEMIS BASECAMP

FIRST MISSION TO MARS